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Les sacs seront laissés devant le tableau. Conservez seulement de quoi écrire et une calculatrice :
pas de téléphone !
Si vous ne comprenez pas une notation, une question, ou si vous pensez avoir découvert une erreur
d’énoncé, signalez-le immédiatement.

Problème 1 : Télégraphie sans fil
La télégraphie sans fil (TSF) est apparue au début du XXesiècle. Elle repose toujours sur le codage de l’alphabet
Morse, mais la transmission se fait par l’intermédiaire d’ondes électromagnétiques. Le principe consiste à émettre
une série d’impulsions électromagnétiques de durées variables pour représenter les traits et les points. On étudie un
émetteur courant de la TSF : l’émetteur à ondes amorties par excitation indirecte, représenté ci-dessous. Lorsque le·la
télégraphiste veut émettre un signal, il appuie sur l’interrupteur (K ).

Tant que la tension ue aux bornes de l’éclateur reste infé-
rieure à une tension de claquage UE , l’éclateur peut être
assimilé à un interrupteur ouvert. Lorsque la tension uE
dépasse la valeur UE , une étincelle apparaît entre les deux
bornes de l’éclateur et celui-ci devient conducteur : on
considérera qu’il se comporte alors comme un fil.

La tension imposée par le générateur de tension continue est égale à E > UE . La bobine d’auto-inductance L et les
condensateurs de capacité C1 et C2 sont supposés idéaux. À l’instant t = 0, le·la télégraphiste ferme l’interrupteur (K ).
Les deux condensateurs sont déchargés pour t < 0.
Données : C1 = 1,0µF ; UE = 5,0kV ; E = 5,5kV.

I Éclateur ouvert
1. (a) Déterminer la valeur de la tension ue aux bornes de l’éclateur à t = 0+, en déduire que l’éclateur se comporte

comme un interrupteur ouvert au début de l’évolution.

(b) Établir l’expression de la tension u1(t ) au borne du condensateur de capacité C1 tant que perdure ce com-
portement de l’éclateur.

2. (a) Montrer qu’une étincelle apparaît entre les bornes de l’éclateur à un instant t1 dont on donnera l’expression.
Calculer la valeur de R pour avoir t1 = 2,5ms.

(b) Tracer l’allure de u1(t ) pour t ∈ [O; t1], en y faisant apparaître UE et E . On fera un schéma assez grand de
la largeur de la copie.

II Transfert de charges
Lorsque l’étincelle apparaît au niveau de l’éclateur, ce dernier se comporte comme un fil. Un transfert de charges quasi-
instantané s’opère alors du condensateur de capacité C1 vers le condensateur de capacité C2, conduisant à l’apparition
d’une tension u2 ≡ U0 aux bornes du condensateur de capacité C2. Du fait de la brièveté de cette phase, la bobine
d’auto-inductance L pourra être assimilée pendant cette phase à un interrupteur ouvert. On pourra aussi utiliser les

notations t−1 et t+1 respectivement pour les instants juste avant et juste après cette phase, et ainsi faire comme si les
tensions u1 et u2 évoluaient de façon discontinue pendant cette phase.

3. (a) Justifier soigneusement qu’à l’issue de cette phase la tension U0 aux bornes du condensateur de capacité C2
vaut :

U0 = UE

1+C2/C1
. (1)

(b) On a C2 À C1, justifier qu’à l’issue de cette phase, on peut considérer que le condensateur de capacité C1
est intégralement déchargé.

III Nouvelle ouverture de l’éclateur
On prend la fin de cette phase comme nouvelle origine des temps t ′ = 0.

4. (a) Justifier qualitativement et succinctement que l’étincelle disparaît et que l’éclateur se comporte de nouveau
comme un interrupteur ouvert.

(b) En déduire la valeur de la tension u1(t ′ = 0) juste après cette ouverture de l’éclateur.

(c) Justifier qu’on a u2(t ′ = 0) =U0 et i (t ′ = 0) = 0.

5. Établir l’expression de la tension u2(t ′) pour t ′ > 0, et avant toute nouvelle étincelle dans l’éclateur, en négligeant
la présence de l’antenne, assimilée pour l’instant à un fil. Préciser l’expression de la période T0 des oscillations
qui apparaissent.

IV Émission par l’antenne
Les oscillations électriques sont converties en une onde électromagnétique par l’antenne. Du fait de la conversion
d’énergie électrique en énergie électromagnétique, l’amplitude des oscillations électriques diminue, jusqu’à être nulle.

On admettra que cette décroissance se fait sur une durée in-
férieure à t1, et on approximera la pseudo-période des oscil-
lations à T0. La répétition de ce cycle conduit alors à l’émis-
sion par l’antenne d’une série d’ondes amorties, comme re-
présenté sur la figure 1 ci-contre.

Fig. 1 : Émission par l’antenne de trains d’ondes amorties
(courbe extraite de l’article «Émetteur à étincelles» de Wi-
kipedia). On y représente l’allure des évolutions du courant
i .

6. (a) Indiquer sur la courbe de la figure 1 les durées t1 et T0.

(b) Représenter l’allure de la tension u1 au cours du temps sur plusieurs cycles en complétant le graphe de la
question 2b.

7. En supposant que les pertes par effet Joule sont négligeables, déterminer l’expression de l’énergie Wa transmise
à l’antenne à chaque train d’ondes en fonction de C2 et U0.

8. Pour cette question uniquement, on modélise l’amortissement des oscillations représentées sur la figure 1 en
assimilant l’antenne à une petite résistance r en série dans le circuit de l’émetteur.
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(a) Établir l’équation différentielle vérifiée par la tension aux bornes du condensateur de capacité C2. À quelle
condition, portant sur L,C2 et r , cette tension aura-t-elle l’allure représentée sur la figure 1?

(b) Lire sur la figure 1 un ordre de grandeur de la pseudo-période T0.

(c) On suppose qu’à t ′ = t1/2, l’amplitude des oscillations de uc a diminué de 80% (ce qui n’est pas forcément
ce qui est représenté sur la figure 1). En déduire un ordre de grandeur du facteur de qualité Q du circuit de
l’antenne.

V Paramètres

À la réception, le signal électromagnétique est capté par une antenne qui convertit le signal électromagnétique en un
signal électrique qui lui est proportionnel. À la suite de traitements plus ou moins complexes selon le type de récepteur,
on obtient de nouveau le signal électrique de la figure 1, qu’on convertit en signal acoustique de même fréquence.
Lorsqu’un signal est reçu, le·la télégraphiste entend un son dont la durée lui permet de distinguer les traits et les points
de l’alphabet Morse, afin de reconstituer le message. On considère dans toute la suite que C2 = 50µF.

9. (a) Rappeler la gamme de fréquences audibles par l’oreille humaine. Sachant que t1 = 2,5ms, montrer qu’on
entend bien un son lors de la réception du signal.

(b) Calculer, en utilisant le résultat de la question 7, la puissance moyenne émise par les trains d’ondes.

10. (a) À chaque émetteur TSF, on alloue une fréquence d’émission. Quels paramètres du circuit peut-on régler
pour émettre à la fréquence allouée?

(b) Donner les valeurs de L et r correspondant aux paramètres précédemment déterminés à la question 8.

(c) Déterminer l’expression et la valeur de la puissance instantanée maximale émise par l’antenne. On pourra
effectuer toute hypothèse qui paraîtra pertinente au vu des caractéristiques du circuit.

Problème 2 : Cavités résonnantes
On étudie dans ce problème des cavités métalliques résonnantes utilisées dans les accélérateurs de particules, pour
«confiner» le champ électromagnétique radiofréquence nécessaire. On peut étudier ces cavités par analogie avec un
système électrocinétique, étudié en régime sinusoïdal établi de pulsation ω. On adopte la notation complexe. Pour une
tension u(t ) =Um cos

(
ωt +ϕ)

, on utilise :

u(t ) = Re
(
u(t )

)
u(t ) =Um exp

(
j
(
ωt +ϕ))=Um exp

(
jωt

)
avec : Um =Um exp

(
jϕ

)
et j 2 =−1. (2)

I Modèle idéal

Dans cette section, on néglige les pertes énergétiques dans
la cavité. Lorsqu’un faisceau de particules accélérées tra-
verse la cavité, son interaction avec la cavité peut être mo-
délisée par le circuit représenté sur la figure 2. Le généra-
teur délivre une tension sinusoïdale u(t ) de pulsation ω et
d’amplitude Um , on choisit sa phase nulle. La cavité par-
faite est modélisée par un condensateur de capacité C en
parallèle avec une bobine d’auto-inductance L. Le faisceau
est modélisé par une un résistor de résistance R. Fig. 2 : Modélisation électrocinétique d’un faisceau dans

une cavité parfaite.

1. Établir l’expression de l’impédance complexe équivalente de la cavité résonnante parfaite.

2. Établir les expressions réelles du courant i1(t ) traversant la résistance R et i2 traversant la cavité, en fonction de
Um ,R,L,C ,ω et t .

3. Pour quelle fréquence de la tension du générateur l’intensité i2 est elle nulle ? On note ω0 la pulsation correspon-
dante.

II Modélisation des pertes énergétiques
Les courants surfaciques sur les parois des cavités résonnantes induisent des pertes énergétiques. On les modélise par
une résistance r placée en série avec la bobine idéale. Dans toute la suite on note x ≡ ω/ω0 où ω0 a été définie à la
question précédente.

4. (a) Établir la nouvelle expression de l’impédance complexe équivalente, notée Z , de la cavité résonnante réelle.
(b) Montrer que le module au carré de cette impédance peut s’écrire sous la forme :∣∣Z

∣∣2 = r 2 1+Q2x2(
1−x2

)2 + x2

Q2

, (3)

avec Q exprimé en fonction des caractéristiques du circuit.

5. On note iL (t ) = I0 cos(ωt +α) l’intensité du courant circulant dans la branche contenant le résistor et la bobine.
Exprimer I0 et α en fonction des caractéristiques du circuit et de ω. Commenter le signe de α.

6. Dans toute la suite, on se place dans la situation où LωÀ r .

(a) Quelle est alors la valeur de α? Que peut-on alors dire du courant circulant dans la bobine et de la tension
aux bornes du générateur.

(b) Pour ω = ω0, déterminer une expression de l’énergie électromagnétique totale, notée E , stockée dans la
cavité résonnante en fonction de L et I0.

(c) En déduire une expression de la puissance moyenne, notée P , dissipée dans r en fonction de ω0,E et Q.
(d) Lorsque la cavité est à température ambiante, le facteur de qualité vaut Q = 3,00 ·104. À la température de

4K, Q = 10 · 1010 et la puissance dissipée vaut 16W. Que vaudrait la puissance dissipée dans une cavité
fonctionnant à température ambiante et ayant la même énergie stockée? Justifier alors l’intérêt d’utiliser des
cavités supraconductrices.
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III Modèle électrocinétique pour deux cavités idéales couplées
Dans un accélérateur de particules on doit utiliser plusieurs éléments successifs, qu’on peut modéliser comme plusieurs
cavités idéales (ie sans résistor de résistance r ) couplées, alimentées par le même générateur.

On utilise le modèle ci-contre où le couplage est assuré par
le condensateur de capacité Cc . On note v1 et v2 les ten-
sions aux bornes des deux condensateurs identiques de ca-
pacité C , du modèle précédent d’une unique cavité idéale.
On pose dans toute la suite D = Cc /C ,ω0 = 1/

p
LC et de

nouveau x =ω/ω0.
Fig. 3 : Modèle électrocinétique pour deux cavités idéales
couplées.

7. On désigne par i l’intensité du courant dans la branche du condensateur de capacité Cc .

(a) Exprimer i à l’aide des tensions v1 et v2.
(b) En déduire le système de deux équations différentielles couplées vérifié par v1 et v2.

8. On cherche une solution à ce problème qui soit sinusoïdale de pulsation ω. On travaille donc avec la notation
complexe, et on pose v1(t ) =V1m exp

(
jωt

)
et v2(t ) =V2m exp

(
jωt +ϕ)

.

(a) Montrer alors que résoudre le système d’équations différentielles revient à déterminer les valeurs de x véri-
fiant : (

1− (1+D) x2
)2 −D2x4 = 0. (4)

(b) Les pulsations vérifiant ces conditions sont appelées «pulsations propres» du système couplé. Déterminer
l’expression des deux pulsations propres ω1 et ω2 du système. Pour chaque pulsation, donner l’expression
de V2m et ϕ en fonction de V1m supposée connue, puis représenter graphiquement l’allure des deux tensions
v1(t ) et v2(t ). On appellera «modes propres» ces solutions.

(c) En déduire, pour chaque pulsation propre du système, l’expression des courants i1(t ) et i2(t ) traversant les
bobines en fonction de V1m ,L et ω.

9. Déterminer l’énergie stockée dans chaque cavité, notées E1(t ) et E2(t ) pour chaque mode propre, en fonction de
V1m ,C ,D et ω1 ou ω2.

10. Représenter graphiquement leur évolution temporelle. Quelle différence notable apparaît entre les deux modes
propres sur le plan énergétique?

Problème 3 : Récupération d’or métallique
On étudie dans ce problème la récupération d’or métallique (symbole chimique Au) à partir d’une solution de chlorure
d’or AuCl –

4 par réduction par l’acide méthanoïque HCOOH selon la réaction :

2 AuCl –
4 + 3 HCOOH(aq) 2 Au(s) + 3 CO2(g) + 6 H+ + 8 Cl–, (5)

qu’on considérera totale.
Une étude cinétique de cette transformation a été réalisée par K. Pacławski et T. Sak en 2014. Les auteurs font l’hypo-
thèse que la vitesse de la réaction s’écrit sous la forme :

v = k
[
AuCl –

4
]p [HCOOH]q , (6)

p et q étant les ordres partiels par rapport aux réactifs et k la constante cinétique de la réaction. Les ordres partiels ne
sont pas nécessairement des entiers.

Les auteurs réalisent à différents instants ti un spectre d’ab-
sorption d’une solution aqueuse contenant initialement un
mélange de AuCl –

4 de concentration C0 = 1,5 · 10−4 mol ·
L−1 et de HCOOH(aq) de concentration C ′

0 = 1,5·10−2 mol·
L−1, à un pH fixé à 2,7 et une température de 50 ◦C.
Seules ces deux espèces sont absorbantes pour les lon-
gueurs d’ondes étudiées. Les spectres obtenus à différents
instants ti sont représentés sur la figure 4. Le temps est ex-
primé en minutes dans toutes les expériences réalisées.

Fig. 4 : . Absorbance de la solution en fonction de la lon-
gueur d’onde λ. Les différentes courbes (notamment (a) et
(b)) représentent les spectres réalisés à différents instants.

Les auteurs réalisent ensuite, à une longueur d’onde λ0 judicieusement choisie, un suivi de l’absorbance au cours du
temps pour différentes séries d’expériences dont les conditions initiales sont présentées dans le tableau 1, le pH étant
maintenu égal à 2,7 dans toutes les expériences.

Série A Série B Série C

θ = 50◦C θ = 50◦C [HCOOH]0 = 1,5 ·10−3

[HCOOH]0 = 5,0 ·10−3 [
AuCl –

4
]

0 = 5,0 ·10−5 [
AuCl –

4
]

0 = 1,5 ·10−4[
AuCl –

4
]

01 = 5 ·10−5 [HCOOH]01 = 5,0 ·10−3 θ1 = 35◦C[
AuCl –

4
]

02 = 1 ·10−4 [HCOOH]02 = 1,0 ·10−2 θ2 = 40◦C[
AuCl –

4
]

03 = 1,5 ·10−4 [HCOOH]03 = 1,5 ·10−2 θ3 = 45◦C[
AuCl –

4
]

04 = 2,0 ·10−4 [HCOOH]04 = 2,0 ·10−2 θ4 = 50◦C

Tab. 1 : Conditions expérimentales initiales du suivi cinétique de la réaction. Les concentrations sont données en
mol ·L−1.

Les mesures d’absborbances en fonction du temps permettent de tracer différentes courbes correspondant à chacune
des séries d’expériences, représentées sur la figure 5. La grandeur v0 est la vitesse initiale de la réaction, kobs est une
constante introduite par les auteurs.
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(a) Série A. (b) Série B. (c) Série C.

Fig. 5 : Courbes correspondant aux différentes conditions expérimentales. La grandeur v0 représente la vitesse initiale
de la réaction, en mol ·L−1 · s−1 kobs est une constante introduite par les auteurs, exprimée en s−1.

I Généralités
On établit dans cette section des résultats généraux, indépendants des résultats expérimentaux. On pourra aborder la
partie suivante de manière indépendante.

1. On suppose, pour cette question seulement, que l’ordre partiel par rapport à q est nul. On note respectivement c0
et c ′0 les concentrations initiales en ions AuCl –

4 et HCOOH.

(a) Établir la loi d’évolution de la concentration en ions AuCl –
4 en fonction du temps. On distinguera les cas

p = 1 et p 6= 1.

(b) En déduire l’expression du temps de demi-réaction pour p = 1 et pour p = 0,5 en fonction de k et c0.

2. On désigne par A l’absorbance de la solution, A0 étant sa valeur à l’instant initial et A∞ sa valeur quand elle est
totalement effectuée.

(a) Exprimer A0 et A∞ en fonction de c0, c ′0, de la longueur ` de la cuve, et des coefficients d’absorption molaire
respectifs de AuCl –

4 et HCOOH, notés ε et ε′.

(b) Établir l’expression de la vitesse de variation
dA

dt
(t ) en fonction de A(t ), A0, A∞,c et k.

II Exploitation des données
3. (a) Estimer la valeur de la longueur d’onde λ0 choisie pour réaliser le suivi expérimental de l’absorbance au

cours du temps.

(b) Attribuer, en le justifiant, les courbes (a) et (b) de la figure 4 aux instants t0 = 0 et t = 120min.

4. (a) Mesurer sur les courbes de la figure 5 les pentes des régressions linéaires qui y figurent.

(b) Dans les séries d’expériences B et C, les auteurs introduisent une constante nommée kobs. Justifier son
introduction et donner son expression.

5. On exploite dans cette partie les courbes de la figure 5.

(a) Déterminer, en détaillant la démarche, la valeur de l’ordre partiel par rapport à AuCl –
4 en utilisant l’une des

courbes.

(b) Déterminer, de même, la valeur de l’ordre partiel par rapport à HCOOH en utilisant une autre courbe.

(c) Déterminer en fin la valeur de l’énergie d’activation, notée Ea , de la réaction.

6. Déduire des résultats précédents l’expression puis la valeur du temps de demi-réaction pour un mélange stœchio-
métrique avec c0 = 1,0 ·10−4 mol ·L−1, à θ = 50◦C.
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